Numerical Solution of Linear Quasistatic Hereditary Viscoelasticity Problems

نویسندگان

  • Simon Shaw
  • John R. Whiteman
چکیده

We give a space-time Galerkin nite element discretization of the linear quasistatic compressible viscoelasticity problem as described by an elliptic partial diierential equation with a Volterra (memory) term. The discretization consists of a continuous piecewise linear approximation in space with a discontinuous piecewise constant or linear approximation in time. We derive an a priori maximum-energy Galerkin-error estimate by exploiting Galerkin \orthogonality" and the data-stability of a related discrete backward problem. We also describe the form of the numerical algorithm with particular emphasis on the computational advantage of modelling the viscoelastic relaxation functions with a Dirichlet-Prony series. 1. Introduction. For a positive real number T let J := 0; T] denote a time interval, and for n 2 f1; 2; 3g let be a time-independent open bounded domain in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates

In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

Space-Time Finite Element Approximation and Numerical Solution of Hereditary Linear Viscoelasticity Problems

In this paper we suggest a fast numerical approach to treat problems of the hereditary linear viscoelasticity, which results in the system of elliptic partial differential equations in space variables , who’s coefficients are Volterra integral operators of the second kind in time. We propose to approximate the relaxation kernels by the product of purely timeand space-dependent terms, which is a...

متن کامل

Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity

We consider a finite-element-in-space, and quadrature-in-timediscretization of a compressible linear quasistatic viscoelasticity problem. The spatial discretization uses a discontinous Galerkin finite element method based on polynomials of degree r—termed DG(r)—and the time discretization uses a trapezoidal-rectangle rule approximation to the Volterra (history) integral. Both semiand fully-disc...

متن کامل

Discontinuous Galerkin methods for solving a quasistatic contact problem

We consider the numerical solution of a nonlinear evolutionary variational inequality, arising in the study of quasistatic contact problems. We study spatially semi-discrete and fully discrete schemes for the problem with several discontinuous Galerkin discretizations in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000